How to make savings on bunker costs

Marine fuel, on average, accounts for more than half of the total cost of operating a marine vessel. Not only this but ship owners and operators are coming under increasing pressure as the deadline for changes to emission control areas (ECAs) in 2015 draws ever closer.

Optimising value where possible in the marine industry is becoming increasingly important. As a sign of the times ExxonMobil this year released their top five tips on how to save money on bunker costs, which the company claim can save owners and operators up to $3 per tonne of fuel purchased.

Read on to see what the top five tips are and how to achieve them.

Minimise Water Content
The ISO 8217:2012 water content compliance level is set at 0.5%. Marine fuels supplied at this cost can potentially cost $6,000 per purchase for a 2,000-tonne bunkering. The water needs to be removed before burning, adding further costs to the purchase of up to $3,000. On top of this, removal of the sludge (a by-product of this process) may also incur additional costs. Opting for a lower water content fuel will result in savings in the long-term. Fuel can be tested on site at time of bunkering for water content using a Parker Kittiwake digi kit.

Stay Clear of High Metal Content
Aluminium and Silicon are commonly found in marine fuels. Known as catalytic fines they have the potential to cause significant damage to vessel engines which can lead to delays, losses and repair costs.

Despite some of the world’s leading engine builders recommending catalytic fines levels of 15 mg/kg, under the ISO 8217:2012 catalytic fines of up to 60mg/kg and 80 mg/kg under the ISO 8217:2005 are allowed for.

All major oil suppliers aim to keep catalytic fines levels in their marine fuel low, at an average of 10mg/kg, helping to limit the removal of catalytic fines, reduce abrasive wear on engine components and avoid the cost of additional maintenance and possible breakdowns.

Marine Fuel Stability
A trend for blending marine fuels from different sources has emerged in an attempt to meet the lower sulphur levels specified in the changing marine industry regulations. The resulting blended fuel can be unstable and has the potential to cause sludge or a build up of heavy deposits which can result in high repair costs and impact vessel performance. The compatibility of different fuels can be tested using a compatibility oven.

Calculated Carbon Aromaticity Index (CCAI) Level
CCAI indicates the level of marine fuel combustion quality. It’s important for these levels to not be too high or too low – low or high level marine fuel can cause poor combustion and has the potential to impact vessel performance. ISO 8217:2012 sets the maximum limit of 870 for most common residual marine fuel grades, choosing marine fuels within these limits will help protect against poor performance. CCAI can be calculated by knowing the density and viscosity of the HFO.

Laboratory analysis
As well as the above points ExxonMobil, and other major oil suppliers, also recommend to send fuel samples to an approved laboratory for bunker fuel testing, allowing operators to understand the quality of the marine fuel received and how to manage the marine fuel system on board their vessels. Ensuring the fuel quality at the time of delivery and calculating the density is an integral part of good bunkering practices.

The importance of a suitably drawn and witnessed representative bunker fuel oil sample cannot be over-emphasised. It forms the basis of all discussion, debate or dispute resolution relating to the bunkering. The most common and economic means of obtaining a representative bunker fuel sample is by using a drip sampler, such as the Parker Kittiwake drip / line bunker fuel samplers found on thousands of ships worldwide. The representative sample is then decanted into approve bottles for analysis and storage.

For further information contact us on:
Tel: +44 1903 731470
Email: kittiwakeinfo@parker.com